Chronobiological analysis and mass spectrometric characterization of pigment-dispersing factor in the cockroach Leucophaea maderae

نویسندگان

  • Yasutaka Hamasaka
  • Carl J Mohrherr
  • Reinhard Predel
  • Christian Wegener
چکیده

Pigment-dispersing factor (PDF) is a neuropeptide that plays a prominent role in the circadian clock of several insects. The cockroach Leucophaea maderae was the first animal where the site of a biological clock could be located, and still is a focal point of circadian research. Although detailed studies on the action of pigment-dispersing factor and the distribution of PDF-like immunoreactivity in the L. maderae brain exist, a native pigment-dispersing factor of this species has not been characterized so far. The authentic Lem-PDF was isolated from L. maderae by a combination of high performance liquid chromatography, crab pigment-dispersion bioassay and an immunosorbent assay. Mass spectrometric characterization and the conserved sequence of pigment-dispersing factor in orthopteromorphan insects suggest that Lem-PDF has the sequence NSEXINSLLGLPKVLNDAa (where X= I or L). Lem-PDF is thus identical to either Periplaneta americana PDF or Acheta domesticus PDF. Detailed analysis of PDF-like immunofluorescence in different regions of the brain suggests that there are no drastic daily changes in the amount of pigment-dispersing factor as occur in Drosophila melanogaster, which might be explained by a lack of circadian pigment-dispersing factor release and production, or by phase differences between the pigment-dispersing factor neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae).

The presence of an endogenous circadian clock in the brain of an animal was first demonstrated in the cockroach Leucophaea maderae. However, the clock's cellular basis remained elusive until pigment-dispersing hormone-immunoreactive neurons, which express the clock genes period and timeless in Drosophila, were proposed as pacemaker candidates. In several insect species, pigment-dispersing hormo...

متن کامل

Pigment-dispersing factor and GABA synchronize cells of the isolated circadian clock of the cockroach Leucophaea maderae.

Pigment-dispersing factor-immunoreactive circadian pacemaker cells, which arborize in the accessory medulla, control circadian locomotor activity rhythms in Drosophila as well as in the cockroach Leucophaea maderae via unknown mechanisms. Here, we show that circadian pacemaker candidates of the accessory medulla of the cockroach produce regular interspike intervals. Therefore, the membrane pote...

متن کامل

Neural organization of the circadian system of the cockroach Leucophaea maderae.

The cockroach Leucophaea maderae was the first animal in which lesion experiments localized an endogenous circadian clock to a particular brain area, the optic lobe. The neural organization of the circadian system, however, including entrainment pathways, coupling elements of the bilaterally distributed internal clock, and output pathways controlling circadian locomotor rhythms are only recentl...

متن کامل

Pigment-dispersing hormone shifts the phase of the circadian pacemaker of the cockroach Leucophaea maderae.

An antiserum against the crustacean neuropeptide pigment-dispersing hormone stains a small set of neurons in the optic lobes of several hemimetabolous and holometabolous insects. These cells, the primary branches of which in the optic lobe lie in the accessory medulla, fulfill several criteria predicted for neurons of the circadian clock. For example, in fruit flies they express timeless and pe...

متن کامل

Photoperiod-dependent plasticity of circadian pacemaker center in the brain of the Madeira cockroach Rhyparobia maderae

The cockroach Leucophaea maderae is an established model in circadian rhythm research. Its circadian clock is located in the accessory medulla of the brain. Pigment-dispersing factor-immunoreactive (PDF-ir) neurons of the accessory medulla act as circadian pacemakers controlling locomotor activity rhythms. To characterize the neuronal network of the circadian system in L. maderae, the PDF-ir ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Insect Science

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2005